The renaissance of immunotherapy is a revolution for cancer patients

Ira Mellman, Ph.D.
Vice President, Cancer Immunology, Genentech
This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others:

1. pricing and product initiatives of competitors;
2. legislative and regulatory developments and economic conditions;
3. delay or inability in obtaining regulatory approvals or bringing products to market;
4. fluctuations in currency exchange rates and general financial market conditions;
5. uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products;
6. increased government pricing pressures;
7. interruptions in production;
8. loss of or inability to obtain adequate protection for intellectual property rights;
9. litigation;
10. loss of key executives or other employees; and
11. adverse publicity and news coverage.

Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche.

For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com

All mentioned trademarks are legally protected.
The renaissance of immunotherapy is a revolution for cancer patients
Early data suggests that anti-PD-L1/PD-1 is active across a wide range of tumor types

- Melanoma: FDA approval
- NSCLC (squamous): FDA approval, 2nd line
- Renal cell carcinoma
- Breast cancer (e.g. TNBC)
- Metastatic bladder cancer
- Head & neck cancer
- Hodgkin's lymphoma

Response rates are modest, at ~10-30%

Broad activity but most patients do not benefit from single agent therapy
Using patient data to understand cancer immunity cycle

MPDL3280A Phase 1 Data: Urothelial Bladder Cancer Patients

Progressive Disease (PD)
Why do many patients not respond?
- No pre-existing immunity?

Stable disease (SD)
What combinations will promote PRs & CRs?
- Insufficient T cell immunity?
- Multiple negative regulators?

Monotherapy durable responses (PR/CR)
What are the drivers of single agent response?
How can PRs be enhanced to CRs?
- Insufficient T cell immunity?
- Multiple negative regulators?
The cancer immunity cycle

Immunosuppression as the rate limiting step to effective anti-tumor immunity

1. Release of cancer cell antigens (cancer cell death)
2. Cancer antigen presentation (dendritic cells/ APCs)
3. Priming and activation (APCs & T cells)
4. Trafficking of T cells to tumors (CTLs)
5. Infiltration of T cells into tumors (CTLs, endothelial cells)
6. Recognition of cancer cells by T cells (CTLs, cancer cells)
7. Killing of cancer cells (Immune and cancer cells)

Immuno-suppression

- α-CTLA4 (ipilimumab)
- α-PD-L1/PD-1 (multiple)

Chen & Mellman (2013) *Immunity*
Combinations of immunotherapeutics

Increasing response rates by keeping cancer immunity cycle turning

- α-CTLA4*
- α-OX40*
- α-CD27*
- α-CD137
- α-GITR
- Vaccines*
- α-CD40*
- α-PDL1*/PD1
- α-CTLA4* (Treg)
- α-OX40* (Treg)
- α-LAG-3
- α-CTLA4* (Treg)
- α-TIGIT*
- α-CSF1R*
- α-KIR
- IDO inhibitor*

* = Genentech/Roche programs

Chen & Mellman (2013) *Immunity*
IDO (indoleamine di-oxygenase)
Another suppressor of effector T cells

Adaptive expression of PD-L1

IFNγ-mediated up-regulation of tumor PD-L1

Shp-2

MAPK PI3K pathways

CD8+ Cytotoxic T Lymphocyte (CTL)

Adaptive expression of IDO

IFNγ-mediated up-regulation of tumor IDO

Shp-2

IDO

MAPK PI3K pathways

CD8+ Cytotoxic T Lymphocyte (CTL)

Inhibition of effector T cell function

Georgia Hatzivassiliou, Yichin Liu
IDO mediates T cell suppression by reducing extracellular tryptophan and increasing kynurenine.

IDO mediates T cell suppression by reducing extracellular tryptophan and increasing kynurenine.

IDO (indoleamine 2,3-dioxygenase) is a second related target to TDO (tryptophan dioxygenase).

- **IDO**
 - Tumor cells
 - IFNγ activates IDO expression
 - Kynurenine
 - Enhance T reg
 - Enhance T reg
 - Supress T effectors

- **IDO**
 - Tumor cells
 - IFNγ activates IDO expression
 - Kynurenine
 - Enhance T reg
 - Enhance T reg
 - Supress T effectors

- **mTOR**
 - Free tryptophan
 - High
 - Promote translation

- **GCN2 kinase**
 - Uncharged Tryptophanol-tRNA
 - Stress response
 - Suppressive cytokines

IDO (indoleamine 2,3-dioxygenase) is a second related target to IDO.

- **TDO (tryptophan dioxygenase)** is a second related target to IDO.
Early combination data shows promising efficacy
Phase I/II study of INCB024360 plus ipilimumab in melanoma

Gibney et al. ASCO 2014
TIGIT

Model of TIGIT regulation of T cell responses

- Human and murine tumor-infiltrating CD8⁺ T cells express high levels of TIGIT.
- Antibody coblockade of TIGIT and PDL1 elicits tumor rejection in preclinical models.
- TIGIT selectively limits the effector function of chronically stimulated CD8⁺ T cells.
- TIGIT interacts with CD226 in *cis* and disrupts CD226 homodimerization.

[Diagram of TIGIT regulation of T cell responses]
TIGIT

TIGIT and PD-L1 combination effective in PD-L1 non-responsive model

Tumor cell or DC

1. Competes with CD226 for PVR

2. Disrupts CD226 activation

3. Directly inhibits T cell in cis

- Control
- Anti-PD-L1
- TIGIT
- Anti-PD-L1 + TIGIT

Complete Remission (CR)

Graph:
- X-axis: Day
- Y-axis: Median Tumor Volume (mm3)
- Log scale on both axes
OX40 function and potential in oncology

Promote antigen dependent effector T cell activation and T regulatory cell inhibition

Increase in T\textsubscript{eff} cells by anti-OX40 may create need to combine with anti-PDL1

Anti-OX40 combined with anti-PDL1 in the MC38 model

Jeong Kim et al. AACR 2015
Combination with Avastin

Increasing response rates by keeping cancer immunity cycle turning

Chen & Mellman (2013) *Immunity*
Increases in CD8⁺ T cell infiltration and vasculature changes with treatments in RCC

<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>Post Avastin</th>
<th>Post Avastin + aPD-L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8 (T cells)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD31 (vasculature)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sznol et al. ASCO GU 2015
Anti-PDL1 in combination with Avastin

Anti-VEGF combination:
preclinical data

- Cloudman melanoma
- Control
- a-PD-L1
- a-VEGF
- a-PD-L1 + a-VEGF

Combination of anti-PDL1 and Avastin *(Ph1 data in renal cancer)*

Sznol et al. ASCO GU 2015
Combinations with chemotherapy

Induced inflammation & antigen release may enhance anti-PDL1 efficacy
Inflammation is necessary for response

Inflamed

- Can responses be improved?

20-30% patients
- T cells present in tumor
- Chemokines present (attract leukocytes)

Responsive to single agent immunotherapies

Non-inflamed

- Can we convert these to responsive?

70-80% patients
- Lack lymphocytic infiltrates

Non-responsive to single agent immunotherapies
Combinations with chemotherapy extend the benefit of anti-PDL1

- Platinum chemo increases number of CD8+ cells in animal models
- Compelling chemo+PD-L1 combination efficacy observed in phase 1 studies
- Broad phase 3 combination program initiated in 1L NSCLC and TNBC

Phase 1 chemo combination data to be presented at ASCO 2015
Not all patients may have pre-existing immunity: monitoring & promoting T cell responses

ImmTACs and bispecific antibodies
Recruiting T cells to cancer cells

ImmTACs and bispecific antibodies

Targeting *intracellular* tumor markers

- Cancer cell
- ImmTAC
- Redirected T cell
- Kill

Targeting *extracellular* tumor markers

- Cancer cell
- Tumor antigen
- T cell
- TCR
- Knob into holes
- Full-length IgG

Immune-mobilizing mTCR Against Cancer*

T-cell Dependent Bispecific

In collaboration with Immunocore
Not all patients may have pre-existing immunity: monitoring & promoting T cell responses

Vaccines:
- Endogenous
- Exogenous
Anti-PDL1 Phase Ia: indication response rates correlate with mutation frequency

Schumacher and Schreiber (2015) Science
Structural analysis suggests that only some mutations will be accessible to T cell receptors.

Immunogenic solvent-exposed mutation

<table>
<thead>
<tr>
<th>REPS1</th>
<th>AQLPNDVVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPGK</td>
<td>ASMTNRELMM</td>
</tr>
<tr>
<td>FLU-NP</td>
<td>ASNENMETM</td>
</tr>
</tbody>
</table>

Non-immunogenic mutation in MHC groove

<table>
<thead>
<tr>
<th>Copine-1</th>
<th>SSPDSDLHLYL</th>
</tr>
</thead>
<tbody>
<tr>
<td>H60</td>
<td>SSVIGVWYL</td>
</tr>
</tbody>
</table>

Promise for a PHC vaccine?

Immunization with antigenic peptides regresses growth of established MC38 tumors

Strategic vision: lead by developing best in class combination therapies

Combinations with immunotherapies
- aCD40 ✔
- Vaccines, Oncolytic Viruses ✔ ✔
- aCTLA-4 ✔
- aOX40 ✔
- aCD27 ✔
- aCEA-IL2v ✔
- T Cell Bispecifics ✔
- ImmTACs Planned
- IDOi ✔ ✔
- aCSF1R ✔
- aTIGIT Planned
- Cytokines, anti-cytokines ✔

Combinations with other agents
- aVEGF ✔
- aCD38 ✔
- FGFR1 ✔
- EGFRi ✔ ✔
- ALKi Planned
- BRAFi ✔
- MEKi ✔
- BTKi ✔
- aCD20 ✔
- aHER2 ✔
- Chemo ✔ ✔
- HDAC ✔
- HDAC ✔
- A2V ✔

* Clinical development
* Preclinical development
* Partnered projects

Chen & Mellman (2013) *Immunity*
Doing now what patients need next