Roche Pharma Day 2019

Late Stage Immunology and Infectious Disease

Cristin Hubbard | Senior Vice President Immunology, Infectious Disease & Ophthalmology, Global Product Strategy
Zafar Hakim | Senior Director, Disease Area Strategy, Immunology, Infectious Disease & Ophthalmology
Creating new opportunities across therapeutic areas

Immunology and Infectious disease

<table>
<thead>
<tr>
<th>Gazyva</th>
<th>Etrolizumab</th>
<th>Xolair</th>
<th>Xofluza</th>
</tr>
</thead>
<tbody>
<tr>
<td>A type II anti-CD20 that provides enhanced B cell depletion</td>
<td>Gut-selective anti-β7 integrin with dual MoA inhibiting lymphocyte trafficking & retention</td>
<td>Xolair blocks IgE-mediated mast cell activation</td>
<td>CAP-dependent endonuclease inhibitor</td>
</tr>
</tbody>
</table>

- **Gazyva**
 - Efficacy in lupus nephritis in randomized Ph II trial

- **Etrolizumab**
 - Extensive Ph III program in Ulcerative Colitis and Crohn’s Disease

- **Xolair**
 - Expanding into nasal polyps and food allergies

- **Xofluza**
 - First “single dose” treatment for influenza that shortens flu symptoms

MoA = mechanism of action
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Cotelic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

9. Immunology
 - Lymphoma: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

6. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

7. Neurology
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

9. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

10. Oncology / Hematology
 - Immunology
 - Neuroscience
 - Ophthalmology
 - Infectious diseases
 - Immunology

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage
Lupus Nephritis
A serious condition with high unmet medical need

500k patients\(^1\) globally with lupus nephritis

- **Proliferative lupus nephritis (LN)** is characterized by:
 - Protein and blood in the urine
 - Progressive loss of kidney function

- **Young women of color** at greatest risk

- **8x risk of death** vs. the general population, due to:
 - Uncontrolled disease
 - Complications of treatment or dialysis
 - Cardiovascular disease

- **No approved therapies in US**

suppl 1 Dall’Era 2017; Izmirly 2017; Arnaud 2014; Brinks 2016; CDC’s Morbidity and Mortality Weekly Report – 2002; RBC=red blood cells
Incomplete efficacy in Lupus Nephritis with type I anti-CD20 Abs

B cells are central to Lupus Nephritis (LN)

In lupus, autoreactive B cells:
- Secrete pathogenic autoantibodies & proinflammatory cytokines
- Present self-antigens
- Activate T cells

Prior experience with type 1 anti-CD20 therapy

Two RCTs failed to confirm clinical benefit of type 1 anti-CD20 therapies in LN
- LUNAR \((n=144)\): no Complete Renal Response benefit when rituximab added to SOC
- BELONG \((n=367)\): no Complete Renal Response benefit when ocrelizumab added to SOC

B cell depletion associated with response

- **Rituximab failed to achieve complete depletion** in many lupus patients when assessed with high sensitivity flow cytometry (HSFC)
- Lupus B cells express mechanisms of resistance to depletion
- Clinical responses appear to be better when complete depletion is achieved as observed in the NOBILITY trial

Rahman and Isenberg 2008; Rovin 2012; Mysler 2013, Mendez 2018; RCT=randomized controlled trial; SOC=standard of care
Gazyva: A novel glyoengineered type II anti-CD20 Ab
Positive Ph II results in lupus nephritis

Ph II (NOBILITY) results

- Ph II (NOBILITY) met both primary and key secondary endpoints
- High unmet medical need; no treatment approved
- Ph III program to be initiated

Gazyva: Greater B-cell depletion may improve efficacy

Type II anti-CD20 region:
- Increased direct cell death
- Decreased CDC
- Reduced CD20 internalization

Glycoengineered Fc region:
- Higher FcγR affinity
- Enhanced ADCC/ADCP

- Gazyva’s MOA shows greater potency than Rituxan in depleting peripheral and tissue-based B cell populations
- Recent studies suggest that tissue-based B cells play a role in lupus nephritis and that their complete depletion is needed

CDC=complement-dependent cytotoxicity; ADCC=antibody-dependent cell-mediated cytotoxicity; ADCP=antibody-dependent cellular phagocytosis; MOA=mechanism of action; Moessner et al., Blood, 2010; Niederfellner et al., Blood, 2011; Dalle et al., MCT, 2011; Jak et al., Blood, 2011; Alduaij et al., Blood, 2011; Lim et al., Blood, 2011; Honeychurch et al., Blood, 2012; Peviani et al., Blood, 2011; Bologna et al., JI, 2011; Braza et al., Haematologica, 2011; Patz et al., BJH, 2011
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Coteliic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

9. Immunology
 - Influenza A/B: Xolfuza

6. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

7. Neurology
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

10. Hemophilia A
 - Hemlibra

11. Pan tumor
 - NTRK+ tumors: Rozlytrek

12. Other oncology
 - Melanoma: Tecentriq, Coteliic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

13. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

14. Hemophilia A
 - Hemlibra

15. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

16. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

17. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

18. Hemophilia A
 - Hemlibra

19. Pan tumor
 - NTRK+ tumors: Rozlytrek

20. Other oncology
 - Melanoma: Tecentriq, Coteliic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

21. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

22. Hemophilia A
 - Hemlibra

23. Pan tumor
 - NTRK+ tumors: Rozlytrek

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage.
Ulcerative colitis
- Age of onset 20-30 years
- Adult pop: 1.2m (US+EU5)
- 50% with moderate/severe disease
- Bloody diarrhea with urgency
- Repeated flares

Crohn’s Disease
- Age of onset 15-30 years
- Adult pop: 1.1m (US+EU5)
- 50% with moderate/severe disease
- Abdominal pain, diarrhea sometimes bloody
- Frequent surgical interventions

Significant disease burden
- Bowel perforation
- Toxic megacolon
- Fistulae and strictures
- Abscesses
- Colostomy
- Pouchitis

Quality of life impact
- Increased risk of colon cancer
- Infertility
- High rates of depression, anxiety, increased suicide
- High rates of severe fatigue, disability, and chronic pain

IBD is a severely debilitating disease that impacts young patients. ~1.3m patients globally with moderate-severe disease.

Loftus et al (2014); Bhandari et al (2017); Gradus et al (2010); Abautret-Daly et al (2017); Morrison et al (2013); Jess et al (2013); InSync Patient Journey Study (2015); Adelphi DSP (2015); IBD=inflammatory bowel disease
High unmet need for improved efficacy in moderate to severe IBD

Low Remission Rates with UC Standard of Care
Many patients lose response over time

- Only 10-20% of patients remain in remission at 1 year
- Onset of some agents are slow, taking up to 12 weeks
- Low rates of endoscopic healing and histological improvement
- Current standard of care increases risk of serious infection and/or malignancy
- No current ability to personalize based on phenotype/biomarker
- Potential to raise the efficacy ceiling with a safe backbone to combine treatments

Adapted from Amiot A. and Peyrin-Biroulet L. Therap Adv Gastroenterol. 2015; 8(2): 66–82; IBD=inflammatory bowel disease; UC=ulcerative colitis
Etrolizumab: First dual-action anti-Integrin targeting α4β7/αEβ7
Potential for best in class efficacy targeting two sources of inflammation

Etrolizumab Ph III program in UC and Crohn’s Disease

A landmark program designed to generate compelling claims

Etrolizumab Ph III development program

<table>
<thead>
<tr>
<th>Ulcerative colitis (UC)</th>
<th>Comprehensive IBD dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIBISCUS I: Induction trial comparing etro vs. adalimumab vs. placebo in anti-TNF naïve patients</td>
<td>• 8 clinical studies</td>
</tr>
<tr>
<td>HIBISCUS II: Induction trial comparing etro vs. adalimumab vs placebo in anti-TNF naïve patients</td>
<td>- 6 Ph III trials, 2 open-label extension studies</td>
</tr>
<tr>
<td>LAUREL: Maintenance trial evaluating etro vs. placebo in anti-TNF naïve patients</td>
<td>- TNF-naïve and TNF-IR</td>
</tr>
<tr>
<td>HICKORY: Induction and maintenance; etro vs. placebo in anti-TNF incomplete responders</td>
<td>• Longitudinal dataset with clinical data, imaging, histology, multiomics, microbiome</td>
</tr>
<tr>
<td>GARDENIA: Sustained remission evaluating etro vs infliximab in anti-TNF naïve patients</td>
<td>Program of firsts</td>
</tr>
<tr>
<td>COTTONWOOD: Roll-over, open-label extension trial evaluating safety</td>
<td>• First head-to-head comparisons vs. both Humira and Remicade (anti-TNFs) in randomized, controlled pivotal studies in UC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crohn’s disease</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BERGAMOT: Induction and maintenance trial of etro vs. placebo in anti-TNF naïve and IRs</td>
<td>• First to evaluate endoscopic improvement in Crohn’s disease</td>
</tr>
<tr>
<td>JUNIPER: Roll-over, open-label extension trial evaluating safety</td>
<td>• First to use central endoscopy reading for patient eligibility and endpoint assessment</td>
</tr>
<tr>
<td></td>
<td>• Evaluating over 3,000 patients for induction and maintenance of disease remission</td>
</tr>
</tbody>
</table>

TNF IR is defined as patients who are refractory to or intolerant of TNF inhibitors; etro=etrolizumab; IBD=inflammatory bowel disease
UC: In patients refractory/intolerant to anti-TNF, symptomatic remission started early and continued to increase to Week 14

Ph III HICKORY

- HICKORY is an ongoing Ph III clinical trial in anti-TNF intolerant patients with moderately-to-severe active UC
- In the open-label induction cohort at 14 weeks, etrolizumab treatment resulted in:
 - clinically meaningful rates of endoscopic improvement
 - symptomatic remission
 - improvements in inflammatory biomarkers
- The response rate continues to increase over time
- The maintenance portion of this study is ongoing with data expected in 2020

Stool frequency¹ and rectal bleeding remission rates²

Ph III HICKORY STUDY with etrolizumab 105mg SC monthly

Rectal bleeding remission

- Remission rates increased through week 14
- Remission rates were approximately 30% at week 4 and 50% at week 14

Stool frequency remission

- Remission rates increased through week 14
- Remission rates were approximately 10% at week 4 and 25% at week 14

¹ SF remission defined as a weekly mean score of < 1.5 with ≥ 1-point reduction from baseline; ² RB remission defined as a weekly mean score of < 0.5 with ≥ 0.5-point reduction from baseline; Data presented at 12th Congress of ECCO; 17 February 2017; Barcelona, Spain; TNF intolerant is defined as patients who are refractory to or intolerant of TNF inhibitors; UC=ulcerative colitis; SC=subcutaneous
CD: Symptomatic remission and endoscopic improvement was shown during induction with monthly dosing

Ph III BERGAMOT

- BERGAMOT Cohort 1 enrolled over 70% of patients who were anti-TNF intolerant
- In this induction cohort, etrolizumab demonstrated clinically meaningful endoscopic improvement
- Symptomatic remission seen as early as week 6 and was observed consistently through week 14
- Etrolizumab was well tolerated, with frequency of adverse events comparable with placebo: no deaths, anaphylaxis, or PML were reported
- Study is continuing to enroll with data in 2021

Peyrin-Biroulet et al; 12th Congress of ECCO; 17 February 2017; Barcelona, Spain; TNF IR is defined as patients who are refractory to or intolerant of TNF inhibitors; CD=Crohn’s disease; PML=progressive multifocal leucoencephalopathy
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. **Hematology franchise**
 - CLL: Venclexta, Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. **Breast Cancer franchise**
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. **Lung Cancer franchise**
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. **GU franchise**
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. **Pan tumor**
 - NTRK+ tumors: Rozlytrek

6. **Other oncology**
 - Melanoma: Tecentriq, Cotellic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. **Hemophilia A**
 - Hemlibra

8. **Infectious diseases**
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

9. **Immunology**
 - Influenza A/B: Xolfuza

10. **Neuroscience**
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

11. **Ophthalmology**
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

Late stage pipeline update

For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage
Continuing to invest in Xolair
New indications and patient convenience

New indications & ease of use

- **Food allergy with high unmet need**
 - Affects > 4.8 million children in US1,2 with no approved preventative treatments except avoidance

- **Nasal Polyps**
 - Positive topline results in Q2 (data to be presented at ACAAI in November); US filing in Q4 2019

- **Rapid IgE point of care assay3**
 - 5-minute point-of-care (POC) test to determine total IgE and specific IgE levels to 5 major perennial allergens associated with allergic asthma

- **Home use**
 - EU approval granted in Dec 2018; US filing planned

Food allergy

- **Allergen avoidance is only partially effective**
 - US: Every 3 minutes, someone goes to ER due to an adverse food reaction5 and ~40% of children with food allergy have experienced anaphylaxis4,5

- **Xolair blocks IgE-mediated mast cell activation with data to support efficacy across multiple food allergens6**

- **Phase III OUTMATCH trial initiated Q3 2019**
 - Designed to determine whether Xolair can decrease or prevent allergic reactions to peanut and other food allergens allergens (such as cow’s milk, egg, wheat, cashew, hazelnut etc.)

- **Unique collaboration between NIH, CoFAR and Genentech/Novartis**
 - NIH-sponsored CoFAR (Consortium for Food Allergy Research) as the leading US academic food allergy research centers with established infrastructure and credibility

Late stage pipeline update

Topics covered in presentations and break-out sessions

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• CLL: Venclexta Gazyva</td>
<td>• HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq</td>
<td>• NSCLC: Tecentriq</td>
<td>• mUC: Tecentriq</td>
<td>• NTRK+ tumors: Rozlytrek</td>
<td>• Melanoma: Tecentriq, Cotellic, Zelboraf</td>
<td>• MS: Ocrevus update</td>
<td>• Lupus nephritis: Gazyva</td>
<td>• DME, nAMD: faricimab</td>
<td>• DME, nAMD: faricimab</td>
<td>• Lupus nephritis: Gazyva</td>
</tr>
<tr>
<td>• DLBCL: Polivy, Venclexta</td>
<td>• TNBC: Tecentriq, ipatasertib</td>
<td>• ALK+: Alecensa</td>
<td>• CRPC: ipatasertib</td>
<td>• OC: Tecentriq, Avastin</td>
<td>• Melanoma: Tecentriq, Cotellic, Zelboraf</td>
<td>• SMA: risdiplam</td>
<td>• Ulcerative colitis: etrolizumab</td>
<td>• AMD: Port Delivery System ranibizumab</td>
<td>• GA: ASO factor B</td>
<td>• Ulcerative colitis: etrolizumab</td>
</tr>
<tr>
<td>• NHL, DLBCL: mosunetuzumab, CD20xCD3</td>
<td>• HR+: ipatasertib; PI3Kα inhibitor</td>
<td>• ROS1+/NTRK+: Rozlytrek</td>
<td>• CRPC: ipatasertib</td>
<td>• HCC: Tecentriq, Avastin</td>
<td>• NMO: satralizumab</td>
<td>• NMOSD: satralizumab</td>
<td>• Crohn’s disease: etrolizumab</td>
<td>• GA: ASO factor B</td>
<td>• NMOSD: satralizumab</td>
<td>• Food allergy: Xolair</td>
</tr>
<tr>
<td>• AML: Venclexta, idasanutlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Huntington’s disease: HTT-ASO</td>
<td></td>
<td></td>
<td></td>
<td>• Choroideremia: Gene therapy</td>
<td>• Food allergy: Xolair</td>
</tr>
<tr>
<td>• MM: Venclexta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Autism: balovaptan</td>
<td></td>
<td></td>
<td></td>
<td>• Choroideremia: Gene therapy</td>
<td>• Food allergy: Xolair</td>
</tr>
</tbody>
</table>

For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage.

16
Xofluza (baloxavir marboxil)
A novel treatment for unmet needs in influenza

Influenza is a serious disease

- Annually **1 in 10 people are affected** by influenza, with millions hospitalized and up to **650,000 deaths**\(^1\) every year
- Currently approved antivirals have limitations in terms of efficacy, route of administration, convenience & resistance
- **Burden on the healthcare system**\(^2\), with significant socio-economic impact:
 - Lost workforce productivity
 - Strained healthcare services
- The risk of severe disease increased in **high-risk groups**: elderly, children, pregnant women and people with chronic health conditions

Xofluza is a novel treatment

- **Xofluza** is a potent **single dose** antiviral, significantly reducing time to cessation of viral shedding and reducing viral load significantly faster than the current standard of care
- **First in class** CAP-dependent endonuclease inhibitor
- **Approved in US in 2018**, and multiple countries
- **Xofluza** is safe and effective at reducing the duration of influenza symptoms compared with placebo
- **Xofluza** has been shown in non-clinical studies to have activity against oseltamivir-resistant and avian strains (H7N9, H5N1)

1. Molinari NA, et al; 2. Estimated to be $87.1B; Baloxavir marboxil co-developed with Shionogi with Roche holding worldwide license excluding Japan and Taiwan
Xofluza with unique MOA: Broad development program
Single dose studied across variety of patient types and clinical settings

Unique mechanism of action

- Xofluza blocks viral mRNA transcription by inhibiting CAP-dependent endonuclease activity

Broad clinical program

Continuing to advance the science and address the largest unmet needs in influenza:

- **Variety of patient types being studied:**
 - Otherwise healthy patients (CAPSTONE-1)
 - High-risk patients (CAPSTONE-2)
 - Pediatric patients (miniSTONE-1)
 - Pediatric patients (miniSTONE-2)
 - Hospitalized patients (FLAGSTONE)

- **Variety of clinical settings being studied**
 - Post-exposure prophylaxis (BLOCKSTONE)
 - Transmission prevention (CENTERSTONE)

- **Pandemic planning**

Xofluza data across multiple strains of influenza and patient types

Recent Ph III data readouts

<table>
<thead>
<tr>
<th>CAPSTONE-1</th>
<th>CAPSTONE-2</th>
<th>BLOCKSTONE</th>
<th>miniSTONE-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xofluza vs. Tamiflu in patients with uncomplicated acute influenza</td>
<td>Xofluza vs. Tamiflu in patients at high risk of complications from influenza</td>
<td>Xofluza vs. placebo for post-exposure prophylaxis (PEP) study of Xofluza</td>
<td>Xofluza vs. Tamiflu in a pediatric population</td>
</tr>
<tr>
<td>• Significant reduction in time to alleviation of symptoms by >24 hrs vs placebo</td>
<td>• Significant reduction in time to alleviation of symptoms by >24 hrs vs placebo</td>
<td>• PEP with Xofluza reduces the risk of influenza by 86% compared with placebo</td>
<td>• Single-dose efficacy comparable to Tamiflu, a proven effective treatment for children with influenza</td>
</tr>
<tr>
<td>• Time to cessation of viral shedding reduced by 48 hrs vs Tamiflu</td>
<td>• Better efficacy in Type B influenza comp to Tamiflu</td>
<td>• Benefit remains significant regardless of influenza A viral subtype, and is also observed in children <12 years of age and in household contacts at high risk of influenza complications</td>
<td>• Strong reduction of viral shedding compared to Tamiflu</td>
</tr>
<tr>
<td>• Xofluza is well tolerated with no new safety signals</td>
<td>• Reduced use of systemic antibiotics & incidence of influenza-related complications</td>
<td></td>
<td>• Well tolerated</td>
</tr>
</tbody>
</table>

Baloxavir marboxil co-developed with Shionogi with Roche holding worldwide license excluding Japan and Taiwan
Creating new opportunities across therapeutic areas

Immunology and Infectious disease key data readouts

<table>
<thead>
<tr>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazyva Lupus Nephritis</td>
<td>Etrolizumab UC</td>
<td>Xolair Food Allergy</td>
</tr>
<tr>
<td>Nobility</td>
<td>HICKORY</td>
<td>OUTMATCH</td>
</tr>
<tr>
<td>Xolair Nasal Polyps</td>
<td>Etrolizumab UC</td>
<td>Etrolizumab CD</td>
</tr>
<tr>
<td>POLYP 1 & POLYP 2</td>
<td>HIBISCUS I & II</td>
<td>BERGAMOT</td>
</tr>
<tr>
<td>Xofluza PEP</td>
<td>Etrolizumab UC</td>
<td>Xolair Hospitalized</td>
</tr>
<tr>
<td>BLOCKSTONE</td>
<td>LAUREL, GARDENIA</td>
<td>FLAGSTONE</td>
</tr>
<tr>
<td>Xofluza Pediatrics (1-12 yr)</td>
<td>Xofluza Pediatrics (0-1 yr)</td>
<td></td>
</tr>
<tr>
<td>miniSTONE-2</td>
<td>MiniSTONE 1</td>
<td></td>
</tr>
<tr>
<td>Xofluza Transmission</td>
<td>CENTERSTONE</td>
<td></td>
</tr>
</tbody>
</table>

- Immunology
- Infectious Diseases
Doing now what patients need next