At the Forefront of R&D Innovation and Breakthrough Treatments
Michael Varney | Head of Genentech Research and Early Development

March 2020
This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others:

1. pricing and product initiatives of competitors;
2. legislative and regulatory developments and economic conditions;
3. delay or inability in obtaining regulatory approvals or bringing products to market;
4. fluctuations in currency exchange rates and general financial market conditions;
5. uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products;
6. increased government pricing pressures;
7. interruptions in production;
8. loss of or inability to obtain adequate protection for intellectual property rights;
9. litigation;
10. loss of key executives or other employees; and
11. adverse publicity and news coverage.

Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche.

For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com

All mentioned trademarks are legally protected.
Executive Summary

• Genentech and Roche Are Innovation Companies
 – **Drill-Deep** science delivers breakthrough and transformative medicines
 – **Substantial innovation-focused investment** fuels growth

• Robust Portfolio in Immunology, Ophthalmology, Neurodegeneration and Infectious Diseases

• Continued Oncology Leadership
 – Focus on both **Molecular Oncology** and **Immuno-Oncology**
 – Pioneer **novel technology platforms**
Multiple R&D Centers Drive Global Innovation

Autonomous innovation centers

- gRED
- pRED
- Chugai

Research
Early Development

Worldwide execution

- Global Product Development
- Manufacturing
- Commercialization

Diversity, Creativity, Experimentation

Scale, Reach, Delivery

gRED=Genentech Research and Early Development; pRED=Pharma Research and Early Development
Premier Innovation Center
Created the world’s largest biotech hub

San Francisco Bay Area

Genentech Research and Early Development

Key Benefits
• Team: 2,200 doing pioneering science
• Innovation: ~20,000 patents granted
• Publication: ~400 publications/year
• Collaborations: >120 globally

Bay Area Life Science Hub*
• Employees: 82,568
• Funding: >$5B VC + > $1B NIH

*California Life Sciences Industry 2018 and 2019 Reports
gRED Is a Publication Powerhouse

~400 Publications in 2019
13 in Cell, Nature and Science

Key Benefits

- Progress science
- Recruit top talent
- Recognition for scientists
- Attract partners to collaborate and expand business opportunities
Innovation Propels Roche Growth

All absolute values are presented in CHFm reported; ¹ Erivedge, Perjeta, Kadcyla, Gazyva, Esbriet, Cotelic, Alecensa, Tecentriq, Ocrevus, Hemlibra, Xofluza, Polivy, and Rozlytrek; ² MabThera and Herceptin in Europe and Japan; ³ Avastin and Herceptin in US Jul-Dec & MabThera/Rituxan in US Nov-Dec
Foundation for gRED Early Drug Development
Building the Pipeline of the Future

Treat * Restore * Cure
Putting the patient first

Science without Borders
Being a Partner of Choice

Human – Machine Partnership
Novel ways of new target discovery

Drug the Undruggable
Focus on increasingly difficult targets

Clear the Path
We Are Creating the Next Wave of Transformative Medicines

<table>
<thead>
<tr>
<th>Oncology</th>
<th>Neuroscience</th>
<th>Ophthalmology</th>
<th>Immunology</th>
<th>Infectious Diseases</th>
<th>Opportunistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunotherapy, Solid Tumors, Hematology</td>
<td>Neuroprotection, Pain</td>
<td>AMD, Geographic Atrophy, Diabetic Retinopathy</td>
<td>Respiratory, Gastrointestinal, Rheumatology, Allergy</td>
<td>ATB-resistant Gram negative bacteria, Microbiome</td>
<td>Nonalcoholic steatohepatitis, Ischemic heart disease</td>
</tr>
</tbody>
</table>

Treat * Restore * Cure
gRED’s **Drill-Deep** Science Creates Transformative Medicines

Scientific insight

Initial product

Label expansion

New drug

New area

HER-2 BC biology & ADC technology

- Earlier line breast cancer
- Gastric cancer

B-cell biology

- Earlier line NHL
- CLL

Immunology

- Immunology

Multiple Sclerosis

Roche

10
Roche’s 31 Breakthrough Therapy Designations in 7 years
Reflecting our drill-deep research strategy

- **Luxturna**: RPE-65 mutation-associated retinal dystrophy
- **Lucentis**: Diabetic retinopathy
- **Actemra**: Giant cell arthritis
- **Actemra**: Systemic Sclerosis
- **SPK-9001**: Hemophilia B
- **Alecensa**: Hemophilia A with factor VIII inhibitors
- **Venclexta**: P17 deletion CLL
- **Venclexta + Rituxan**: R/R CLL
- **Venclexta + LDAC**: Acute myeloid leukemia
- **Zelboraf**: Erdheim-Chester
- **Ocrevus**: Primary progressive MS
- **Rituxan**: Pemphigus vulgaris
- **polatuzumab vedotin + BR**: R/R DLBCL
- **entrectinib**: NTRK-positive solid tumors
- **balovaptan**: Autism
- **satralizumab**: NMOSD
- **Xolair**: Food allergies
- **Gazyva**: Lupus nephritis
- **Cotellic**: Histiocytic neoplasms
- **Kadcyla**: Adjuvant HER2+ BC
- **Genentech's 21 Breakthrough Therapy Designations in 7 years Reflecting our drill-deep research strategy**

2013
- **Tecentriq**: Lung cancer
- **Gazyva**: CLL
- **Alecensa**: Lung cancer
- **Esbriet**: IPF
- **Luxturna**: RPE-65 mutation-associated retinal dystrophy

2014
- **Lucentis**: Diabetic retinopathy
- **Actemra**: Systemic Sclerosis
- **SPK-9001**: Hemophilia B
- **Alecensa**: Hemophilia A with factor VIII inhibitors
- **Venclexta**: P17 deletion CLL
- **Venclexta + Rituxan**: R/R CLL
- **Venclexta + LDAC**: Acute myeloid leukemia
- **Zelboraf**: Erdheim-Chester
- **Ocrevus**: Primary progressive MS
- **Rituxan**: Pemphigus vulgaris
- **polatuzumab vedotin + BR**: R/R DLBCL
- **entrectinib**: NTRK-positive solid tumors
- **balovaptan**: Autism
- **satralizumab**: NMOSD
- **Xolair**: Food allergies

2015
- **Gazyva**: Lupus nephritis
- **Cotellic**: Histiocytic neoplasms
- **Kadcyla**: Adjuvant HER2+ BC

2016
- **Luxturna**: RPE-65 mutation-associated retinal dystrophy
- **Lucentis**: Diabetic retinopathy
- **Actemra**: Giant cell arthritis
- **Actemra**: Systemic Sclerosis
- **SPK-9001**: Hemophilia B
- **Alecensa**: Hemophilia A with factor VIII inhibitors
- **Venclexta**: P17 deletion CLL
- **Venclexta + Rituxan**: R/R CLL
- **Venclexta + LDAC**: Acute myeloid leukemia
- **Zelboraf**: Erdheim-Chester
- **Ocrevus**: Primary progressive MS
- **Rituxan**: Pemphigus vulgaris
- **polatuzumab vedotin + BR**: R/R DLBCL
- **entrectinib**: NTRK-positive solid tumors
- **balovaptan**: Autism
- **satralizumab**: NMOSD
- **Xolair**: Food allergies

2017
- **Gazyva**: Lupus nephritis
- **Cotellic**: Histiocytic neoplasms
- **Kadcyla**: Adjuvant HER2+ BC

2018
- **Luxturna**: RPE-65 mutation-associated retinal dystrophy
- **Lucentis**: Diabetic retinopathy
- **Actemra**: Giant cell arthritis
- **Actemra**: Systemic Sclerosis
- **SPK-9001**: Hemophilia B
- **Alecensa**: Hemophilia A with factor VIII inhibitors
- **Venclexta**: P17 deletion CLL
- **Venclexta + Rituxan**: R/R CLL
- **Venclexta + LDAC**: Acute myeloid leukemia
- **Zelboraf**: Erdheim-Chester
- **Ocrevus**: Primary progressive MS
- **Rituxan**: Pemphigus vulgaris
- **polatuzumab vedotin + BR**: R/R DLBCL
- **entrectinib**: NTRK-positive solid tumors
- **balovaptan**: Autism
- **satralizumab**: NMOSD
- **Xolair**: Food allergies

2019
- **Gazyva**: Lupus nephritis
- **Cotellic**: Histiocytic neoplasms
- **Kadcyla**: Adjuvant HER2+ BC
~70% of Genentech/Roche Molecules Are First-in-Class
Our Science Makes Us the Partner of Choice for Outside Innovation
We Focus On Increasingly Difficult Targets

- Drugged: 1,000 (25%)
- "Undruggable" Hard-to-Drug: 3,000 (75%)
- Disease Modifying: 4,000 (20%)
- Total: ~20,000 genes

We play here

Drug the Undruggable
Platform Diversity Drives Success in Attacking Difficult Targets

- **Macrocycles**: DNA Encoded Library Platform, Quadrillion of Molecules
- **CIDES**: Chemical Inducer of Degradation
- **CKPs**: Cystine Knot Peptides
- **Others Undisclosed**: Top Secret
- **Antibody-Mediated Delivery**: Antibody-Mediated Delivery
- **Tissue Targeting & Tumor Inducible Activation**: Tissue Targeting & Tumor Inducible Activation
- **RNA Disrupters**: RNA Disrupters
- **Biomaterials for LM, SM Delivery**: Immune Tolerance Peptide coated MHC nanoparticles Vaccines

Drug the Undruggable
gRED Utilizes Differentiated Platforms to Benefit Cancer Patients

<table>
<thead>
<tr>
<th>Small molecules</th>
<th>Bi-specifics</th>
<th>Engineered cytokines</th>
<th>mAb</th>
<th>ADC</th>
<th>Personalized mRNA vaccine</th>
<th>Personalized Engineered T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipatasertib</td>
<td>Mosunetuzumab</td>
<td>IL-15(^1)</td>
<td>Tecentriq aTIGIT (tiragolumab)</td>
<td>Polivy Kadcyla</td>
<td>iNeST platform: mRNA-LPX Liposome</td>
<td>Activated T cell with neoantigen specificity</td>
</tr>
<tr>
<td>PI3Kα inhibitor SERD</td>
<td>FcRH5 x CD3 HER2 x CD3</td>
<td></td>
<td></td>
<td></td>
<td>mRNA</td>
<td></td>
</tr>
<tr>
<td>Target oncogenes, suppress tumor growth</td>
<td>Engage and activate immune cells to kill tumour cells</td>
<td>Amplify immune response</td>
<td></td>
<td>Targeted toxic payload</td>
<td>Patient’s neo-antigens for anti-tumour immune response</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) in collaboration with Xencore; \(^2\) in collaboration with BioNTech; \(^3\) in collaboration with Adaptive Biotechnologies
Selective PI3 Kinase Program
PI3K/AKT is the Most Frequently Mutated Pathway in Cancer

14 million cancer patients diagnosed annually worldwide, ~17% are PIK3CA mutant
2.4M patients

Growth factor receptors

PIK3α

PI3Kβ

PI3Kδ

PI3Kγ

Ras

PIP2

PIP3

PTEN

Thr308

Ser473

PI3K/AKT

Cell cycle, proliferation

Cell survival

Protein synthesis, cell growth

mTORC2

mTORC1

PI3K/AKT signaling pathway:
- Growth factor receptors activate PI3K/AKT
- PIK3CA mutation

Tumor Type	PIK3CA mutation
Breast
 • HR+ | 40-45%
 • Her2+ | 20-30%
 • TNBC | 8%
Endometrial | 22-31%
Colon | 13-20%
Bladder | 14-20%
Cervix | 11-24%
HNSCC | 11-16%
Gastric | 5-9%
Ovarian CC | 33%
GDC-0077 has Potential to be Best In Class PI3K Inhibitor

Our PI3K alpha inhibitor leverages mutant degrader mechanism of action

Best in-class molecular properties:
- More selective for PI3Kα
- Degradation of mutant PI3Kα
- Greater, more durable target inhibition

Potential for clinical differentiation:
- Increased efficacy
- Greater safety margins
- Combination with CDK4/6i + ET
Phase I Data Differentiates GDC-0077 from Other PI3K Inhibitors

• Well tolerated with improved safety
 – No colitis (58 patients on GDC-0077 > 5 months)
 – Most frequent related adverse event: low grade hyperglycemia
 – Low rate of discontinuation due to adverse event: 1/115 patients

• Anti-tumor activity alone and with endocrine-based therapies
 – Able to combine at its single agent recommended Phase II dose with letrozole and palbociclib at standard doses
GDC-0077 Demonstrates Best in Class Efficacy

- **Single agent activity >> competitors** (GDC-0077 ORR 21% vs alpelisib 4%*)
- GDC-0077 **can safely combine** at its single agent recommended Ph II dose with palbociclib + letrozole at standard approved doses

Cross trial comparison
Robust gRED Portfolio Across Therapeutic Areas

<table>
<thead>
<tr>
<th>Early Dev</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Registration</th>
<th>Marketed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NME</td>
<td>Anti-FcRH5/CD3</td>
<td>iNeST (PCV)</td>
<td>ipatasertib</td>
<td>Oncology</td>
<td>Avastin</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-HER2/CD3 TDB</td>
<td>Anti-ST2</td>
<td>mPI3K alpha (GDC-0077)</td>
<td>Immunology</td>
<td>Cotellic</td>
</tr>
<tr>
<td>NME</td>
<td>belvarafenib</td>
<td>fenebrutinib</td>
<td>SERD (GDC-9545)</td>
<td>Neuroscience</td>
<td>Erivedge</td>
</tr>
<tr>
<td>NME</td>
<td>IL15/IL15-Ra-Fc</td>
<td>IL22 Fc</td>
<td>tiragolumab</td>
<td>Metabolism</td>
<td>Herceptin</td>
</tr>
<tr>
<td>NME</td>
<td>MAGE-A4 ImmTAC</td>
<td>NME (RG6173)</td>
<td>etrolizumab</td>
<td>Infectious Diseases</td>
<td>Kadryla</td>
</tr>
<tr>
<td>NME</td>
<td>mosnetuzumab</td>
<td>Anti-FGFR1/KLB</td>
<td></td>
<td></td>
<td>Perjeta</td>
</tr>
<tr>
<td>NME</td>
<td>NME (RG6151)</td>
<td>NME (RG6147)</td>
<td></td>
<td></td>
<td>Polivy</td>
</tr>
<tr>
<td>NME</td>
<td>NME (RG6244)</td>
<td>Semorinemab (Anti-Tau)</td>
<td></td>
<td></td>
<td>Tarceva</td>
</tr>
<tr>
<td>NME</td>
<td>NME (RG6287)</td>
<td></td>
<td></td>
<td></td>
<td>Tecentriq</td>
</tr>
<tr>
<td>NME</td>
<td>DLK Inh</td>
<td></td>
<td></td>
<td></td>
<td>Venclextra</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-S. Aureus TAC</td>
<td></td>
<td></td>
<td></td>
<td>Pulmozyme</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xolair</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ocrevus</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lucentis</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Activase</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nutropin</td>
</tr>
<tr>
<td>NME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TNKase</td>
</tr>
</tbody>
</table>
Doing now what patients need next