Roche: At the Forefront of R&D Innovation and Breakthrough Treatments

Michael Varney, Ph.D.
Executive Vice President, Genentech Research and Early Development (gRED)
Member of Corporate Executive Committee (CEC)
This presentation contains certain forward-looking statements. These forward-looking statements may be identified by words such as ‘believes’, ‘expects’, ‘anticipates’, ‘projects’, ‘intends’, ‘should’, ‘seeks’, ‘estimates’, ‘future’ or similar expressions or by discussion of, among other things, strategy, goals, plans or intentions. Various factors may cause actual results to differ materially in the future from those reflected in forward-looking statements contained in this presentation, among others:

1. pricing and product initiatives of competitors;
2. legislative and regulatory developments and economic conditions;
3. delay or inability in obtaining regulatory approvals or bringing products to market;
4. fluctuations in currency exchange rates and general financial market conditions;
5. uncertainties in the discovery, development or marketing of new products or new uses of existing products, including without limitation negative results of clinical trials or research projects, unexpected side-effects of pipeline or marketed products;
6. increased government pricing pressures;
7. interruptions in production;
8. loss of or inability to obtain adequate protection for intellectual property rights;
9. litigation;
10. loss of key executives or other employees; and
11. adverse publicity and news coverage.

Any statements regarding earnings per share growth is not a profit forecast and should not be interpreted to mean that Roche’s earnings or earnings per share for this year or any subsequent period will necessarily match or exceed the historical published earnings or earnings per share of Roche.

For marketed products discussed in this presentation, please see full prescribing information on our website www.roche.com

All mentioned trademarks are legally protected.
Executive Summary

• Roche Group has an industry leading portfolio:
 – Large and Diverse

• Oncology: Continue to innovate, dominate and expand
 – Cancer Immunotherapy: extensive and combination approach
 – Breast cancer: SERD GDC-0810

• Beyond oncology: Follow the science
 – Neuroscience: Nav1.7
 – Infectious disease: Anti-Flu A

• gRED: Continuing transformative innovation into the future
Deep Biological Insights Drive Disease Strategies

Oncology
- Expand dominant leadership
- Explore new MOA: Cancer immunotherapy, SERD, etc.
- Pursue combinations and personalized medicines
- Develop new delivery platforms: ADC, Bi-specific, etc.

Immunology
- Grow respiratory and RA franchise
- Expand into other debilitating diseases

Neuroscience
- Focus on neurodegenerative disorders and pain

Ophthalmology
- Enhance delivery mechanisms
- Expand into dry AMD and GA

Infectious Disease
- Combat resistance and take advantage of biologics approach
2016 Onwards: Significant Launch Activities

Outcome studies are event-driven: timelines may change. Standard approval timelines of 1 year assumed.
Roche Has the Most Breakthrough Designations

12 Breakthrough Therapy Designations

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roche</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>BMS</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Novartis</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Merck</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Pfizer</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>GSK</td>
<td>5</td>
</tr>
</tbody>
</table>

Year	Molecule
2016 | **Ocrelizumab** (PPMS) |
2016 | **Venetoclax** (AML) |
2016 | **Venetoclax + Rituxan** (R/R CLL) |
2015 | **Actemra** (Systemic sclerosis) |
2015 | **Atezolizumab** (NSCLC) |
2015 | **Venetoclax** (R/R CLL 17p del) |
2014 | **Emicizumab/ACE 910** (Hemophilia A) |
2014 | **Esbriet** (IPF) |
2014 | **Lucentis** (DR) |
2013 | **Alectinib** (2L ALK+ NSCLC) |
2013 | **Gazyva** (1L CLL) |

Source: http://www.focr.org/breakthrough-therapies as at 17 February 2016; CLL=Chronic Lymphocytic Leukemia; NSCLC=Non-Small Cell Lung Cancer; IPF=Idiopathic Pulmonary Hypertension; DR=Diabetic Retinopathy
Executive Summary

• **Roche Group** has an industry leading portfolio:
 – Large and Diverse

• **Oncology**: Continue to innovate, dominate and expand
 – Cancer Immunotherapy: extensive and combination approach
 – Breast cancer: SERD GDC-0810

• **Beyond oncology**: Follow the science
 – Neuroscience: Nav1.7
 – Infectious disease: Anti-Flu A

• **gRED**: Continuing transformative innovation into the future
CI Strategy: Combinations are the Future

Launched/late-stage portfolio

Chemotherapy combinations approved
Targeted combinations approved
Roche combinations in trials
Chemotherapy combinations in trials
Roche NMEs approval expected in 2016
Roche NMEs early stage
Approved non-Roche drugs
Cancer Immunology Research Focus: The Next Generation

Costimulators:
- Anti-OX40 Ab (Ph 1)
- NME1

Stromal modifiers:
- NME2
- NME3

Inhibitory checkpoints:
- Anti-TIGIT Ab (ED)
- NME4
- NME5
- NME6

T_R cells:
- Anti-OX40 Ab (Ph 1)
- IDO SMI (Ph 1)
- NME7
- NME8

Cancer cell death and release of cancer proteins

Initiation of Immune Response

T cell activation and expansion

Immune cell trafficking and infiltration

Immune suppression

NMEs
anti-OX40: Dual Action Promotes T cell Activation and T Regulatory Cell Inhibition

anti-OX40: Promising Anti-Tumor Activity as Single Agent and in Combination with anti-PD-L1

Ongoing studies

- Phase 1a (MOXR0916)
- Phase 1b combination (MOXR0916 + atezolizumab)
- Planned (MOXR0916 + GDC-0919)

Jeong Kim et al. AACR 2015

MOXR0916 = anti-OX40
GDC-0919 is a Potent and Selective IDO1 Inhibitor

IDO1:
- IDO1 activity contributes to maternal-fetal tolerance and tumor immune escape
- Expression correlates with poor patient survival across a range of tumors
- **MOA:** Catabolizes Tryptophan to Kynurenine, suppresses effector T cells and enhances Tregs function

IDO1 Inhibitor GDC0919 (NLG919):
- Oral small molecule inhibitor of IDO1
- Being tested in Ph1b in combination with **atezolizumab**
Expanding our Leadership in Breast Cancer

SERDs degrade ER, down-regulate Estrogen Receptor (ER) and antagonize ER transcriptional activity

- atezolizumab (MPDL3280A)
- Ipatasertib (GDC-0068)
- SERD (GDC-0810; GDC-0927)
- Taselisib PI3K Inhibitor (GDC-0032)
- HER2+
- ER+
- TNBC
- Others
- Others 1%
- TNBC 13%
- HER2+ 21%
- ER+ 65%
- Others 13%
- HER2+ 21%
- ER+ 65%
SERD GDC-0810 Anti-tumor Activity in Patient with Mutant ESR1(E380Q)

Pre-treatment at Screening

Abnormal uptake in bone

On-treatment at Cycle 2 Day 3

Resolved uptake in bone

Pre-treatment at Screening

Post-treatment at Cycle 6 Day

CT

45% reduction in target lesions
Executive Summary

• **Roche Group has an industry leading portfolio:**
 – Large and Diverse

• **Oncology: Continue to innovate, dominate and expand**
 – Cancer Immunotherapy: extensive and combination approach
 – Breast cancer: SERD GDC-0810

• **Beyond oncology: Follow the science**
 – Neuroscience: Nav1.7
 – Infectious disease: Anti-Flu A

• **gRED: Continuing transformative innovation into the future**
Beyond Oncology: Robust Portfolio across Multiple TAs

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Marketed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunology</td>
<td>Ophthalmology</td>
<td>Neuroscience</td>
<td>Cardio Metabolism</td>
</tr>
<tr>
<td>Cadherin-11 Mab RA</td>
<td>lebrikizumab - COPD</td>
<td>MabThera pemphigus vulgaris</td>
<td>Actemra – RA</td>
</tr>
<tr>
<td>Cat-5 antag - Autoimmune Diseases</td>
<td>lebrikizumab - Atopic Dermatitis</td>
<td>Actemra giant cell arteritis</td>
<td>Actemra – Polyarticular & Systemic Juvenile Idiopathic Arthritis</td>
</tr>
<tr>
<td>NME fibrosis</td>
<td>lebrikizumab +/- Esbriet - IPF</td>
<td>Actemra systemic sclerosis</td>
<td>Rituxan - RA</td>
</tr>
<tr>
<td>IL22 Fc inflammatory disease</td>
<td>obinutuzumab lupus nephritis</td>
<td>Lebrikizumab severe asthma</td>
<td>Rituxan - Granulomatosis w/ Polyangiitis & Microscopic Polyangiitis</td>
</tr>
<tr>
<td>Erivedge + Esbriet IPF</td>
<td>nemolizumab (IL-31R) atopic dermatitis</td>
<td>Etrolizumab ulcerative colitis</td>
<td>Esbriet - IPF</td>
</tr>
<tr>
<td>obinutuzumab renal transplant</td>
<td>nemolizumab (IL-31R) pruritus dialysis pts</td>
<td>Etrolizumab Chron’s Disease</td>
<td>Xolair – Asthma</td>
</tr>
<tr>
<td>BTK Inh autoimmune disease</td>
<td>VAP-1 Inh Inflam. disease</td>
<td>Actemra large vessel vasculitis</td>
<td>Xolair – CIU</td>
</tr>
<tr>
<td>NME glaucoma</td>
<td>Lucentis wAMD port delivery</td>
<td>Ilapalizumab - Geographic Atrophy</td>
<td>Lucentis – wAMD</td>
</tr>
<tr>
<td></td>
<td>VEGF-ANG2 biMab - wAMD</td>
<td></td>
<td>Lucentis – DME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lucentis RVO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lucentis – Diabetic Retinopathy w/ DME</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>Neuroscience</td>
<td>Cardio Metabolism</td>
<td></td>
</tr>
<tr>
<td>alpha Synuclein Mab Parkinsons Disease</td>
<td>olesoxime - Spinal Muscular Atrophy</td>
<td>Ocrelizumab PPMS</td>
<td></td>
</tr>
<tr>
<td>ASO Huntington’s Disease</td>
<td>basimisranil - Down Syndrome</td>
<td>Ocrelizumab RMS</td>
<td></td>
</tr>
<tr>
<td>Nav 1.7 inh (2) pain</td>
<td>V1 recp antag (2) autism</td>
<td>gantenerumab - Alzheimer’s Disease</td>
<td></td>
</tr>
<tr>
<td>Nav 1.7 inh pain</td>
<td>basimgluran TRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMN2 splicer spinal muscular atrophy</td>
<td>crenezumab - Alzheimer’s Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMN2 splicer (2) spinal muscular atrophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>Phase 2</td>
<td>Phase 3</td>
<td>Marketed</td>
</tr>
<tr>
<td>Cardio Metabolism</td>
<td>Neuroscience</td>
<td>Ophthalmology</td>
<td>Cardio Metabolism</td>
</tr>
<tr>
<td>β-lactamase inh - Bact. Infections DBO</td>
<td>Flu A Mab - Influenza A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flu B Mab Influenza B</td>
<td>TLR7 agonist - HBV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NME HBV</td>
<td>danoprevir HCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV Therapeutic vaccine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NME infectious disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGFR1/KLB Mab metabolic disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pain Remains a Huge Unmet Need

Medical Issue

• 20% of individuals experience pain (majority moderate-severe)

• Current development dominated by reformulated or next gen opioids with similar liabilities to current therapy

Unmet Need

• Only 25% of patients achieve adequate relief with current therapy

• Inadequate response primarily due to insufficient efficacy & narrow safety margins that limit dose

Opportunity

• Pain drugs with new MOAs that:
 – Increase potency
 – Improve safety
 – Limit addiction
Nav1.7 Genetically Validated in Humans

1. Human Nav1.7 mutations
 - Loss of function mutations result in pain insensitivity
 (CIP - congenital insensitivity to pain)
 - Activating mutations cause spontaneous pain syndromes
 (IEM - inherited erythromelalgia, PEPD - paroxysmal extreme pain disorder; SFN - small fiber neuropathy)

2. Mouse Nav1.7 knock-outs show efficacy in:
 - Acute pain models (e.g. burn injury)
 - Inflammatory models (e.g., CFA)
 - Neuropathic models (e.g., SNT and CCI)
gRED has Potent and Selective Nav 1.7 Antagonists

Selectivity profile of GDC-0276
 (>25-fold selective over other Nav channels)

GDC-0276 inhibits pain in an
IEM [Nav1.7(I848T)] transgenic mouse

Clinical Program Summary

- **GDC-0276**: SAD complete and MAD to be completed this year
- **GDC-0310**: A second highly selective and potent Nav1.7 inhibitor in phase 1
- Phase 2 expected in late 2016/early 2017
Severe Influenza – Significant Unmet Need

Epidemiology

- **600,000** hospitalizations in US and EU
- **25,000** deaths in US alone
- Vaccinations: Efficacy dependent on immunocompetence and antigen match
 - 2014: CDC estimate of vaccine effectiveness only 18% against circulating H3N2
- Cases: 80% Influenza A, 20% Influenza B

Unmet need Remains Significant

- **25%** of hospitalized patients require ICU care
 - Mean ICU stay is 7.2 days, median 4 days
- **10% - 30%** mortality rate in the ICU
- No therapy has demonstrated clinical benefit in hospitalized patients with severe influenza

“Spanish Flu” 1918 Influenza Pandemic Millions Dead
Novel Influenza-A Antibody Can Rescue Lethal Infection

Anti-Flu A

- Human antibody binds to a conserved site on the stalk of HA, blocking endosomal fusion required for viral replication
- Neutralizes all tested seasonal and pandemic human influenza A viruses
- Strong pre-clinical survival data as single agent and in combination with Tamiflu

Nakamura, Chai et al, Cell Host Microbe 2013
Anti-Flu A Reduces Viral Load and Symptoms in Humans

Global **Phase 2b ‘Proof of Concept’** study in hospitalized influenza A infected patients **began Q1 2015**

Composite Symptom Score

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>3600mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom Score</td>
<td>207.7</td>
<td>37.7</td>
</tr>
<tr>
<td>% Reduction</td>
<td>81.8%</td>
<td>81.8%</td>
</tr>
<tr>
<td>p-Value</td>
<td>(0.29)</td>
<td>(0.29)</td>
</tr>
</tbody>
</table>

Median AUC by quantitative PCR

-97.5%
p=0.0051
gRED: Continuing the transformative innovation into the future

• Innovation is alive and well at gRED: top talent and great portfolio

• Continue to focus on oncology while expanding into broader therapeutic areas by following the science

• gRED is a premier innovation center for Roche with access to Roche’s global leadership and resources
<table>
<thead>
<tr>
<th>Early Dev</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Registration</th>
<th>Marketed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NME</td>
<td>Anti-CD20/CD3</td>
<td>SERD (GDC-0810)</td>
<td>Tasilisib</td>
<td>Atezolizumab</td>
<td>Avastin</td>
</tr>
<tr>
<td>NME</td>
<td>ChK-1 inh (GDC-0575)</td>
<td>Anti-Influenza A</td>
<td>Ipatasertib (GDC-0068)</td>
<td>Venotoclax</td>
<td>Rituxan/MabThera</td>
</tr>
<tr>
<td>NME</td>
<td>ERK inh (GDC-0994)</td>
<td></td>
<td>Polatuzumab vedotin</td>
<td>Ocrelizumab</td>
<td>Herceptin</td>
</tr>
<tr>
<td>NME</td>
<td>IDO Inh (GDC-0919)</td>
<td></td>
<td></td>
<td></td>
<td>Kadcyla</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-OX40</td>
<td></td>
<td></td>
<td></td>
<td>Perjeta</td>
</tr>
<tr>
<td>NME</td>
<td>SERD (GDC-0927)</td>
<td></td>
<td></td>
<td></td>
<td>Tarceva</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-Ly6E ADC</td>
<td></td>
<td></td>
<td></td>
<td>Gazyva</td>
</tr>
<tr>
<td>NME</td>
<td>NME ADC</td>
<td></td>
<td></td>
<td></td>
<td>Cotellic</td>
</tr>
<tr>
<td>NME</td>
<td>NME ADC</td>
<td></td>
<td></td>
<td></td>
<td>Erivedge</td>
</tr>
<tr>
<td>NME</td>
<td>ITMN-14440 (GDC-3280)</td>
<td></td>
<td></td>
<td></td>
<td>Xolair</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-FGFR1/KLB</td>
<td></td>
<td></td>
<td></td>
<td>Pulmozyme</td>
</tr>
<tr>
<td>NME</td>
<td>Nav1.7 (GDC-0276)</td>
<td></td>
<td></td>
<td></td>
<td>Lucentis</td>
</tr>
<tr>
<td>NME</td>
<td>Nav1.7 (GDC-0310)</td>
<td></td>
<td></td>
<td></td>
<td>Nutropin</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-Influenza B</td>
<td></td>
<td></td>
<td></td>
<td>Activase</td>
</tr>
<tr>
<td>NME</td>
<td>Anti-StaphA vcRifalog TAC</td>
<td></td>
<td></td>
<td></td>
<td>TNKase</td>
</tr>
</tbody>
</table>

- **Oncology**
- **Immunology**
- **Neuroscience**
- **Ophthalmology**
- **Metabolism**
- **Infectious Diseases**

- Projects with Companion Diagnostics
Doing now what patients need next