gRED focus areas
Discovering new biologies and applying them broadly

Oncology
Discover and develop novel therapies and transformative combinations:
- Molecular oncology
- Cancer immunology

Immunology
Focus on high unmet need indications:
- Respiratory: asthma, COPD, IPF
- Rheumatology: RA, SLE, scleroderma
- Gastroenterology: UC, CD
- Opportunistic: wound healing, CSU

Neuroscience
Focus on:
- Alzheimer’s disease
- Parkinson’s disease
- Amyotrophic lateral sclerosis
- Moderate to severe pain

Ophthalmology
Focus on age-related macular degeneration

Infectious disease
Focus on difficult-to-treat bacterial and viral infections:
- Influenza
- Methicillin-resistant *Staph. aureus*
- ATB-resistant, gram-negative bacteria

Today's highlights
- Personalized cancer vaccine
- T-cell dependent bispecific antibody platform
- BTK inhibitor

COPD=Chronic obstructive pulmonary disease; IPF=Idiopathic pulmonary fibrosis; RA=Rheumatoid arthritis; SLE=Systemic lupus erythematosus; UC=Ulcerative colitis; CD=Crohn's disease; CSU=Chronic spontaneous urticaria; ATB=Antibiotic
gRED leads the industry in scientific publications
Sustained record of cutting-edge scientific discoveries

Past 7 Year Average
~400 Publications/yr
~16 in Cell, Nature and Science/yr

Key Benefits
- Progress science
- Recruit top talent
- External recognition for scientists
- Engage investigators’ interest to enhance collaboration

*As of Aug 2017, including articles, reviews, books and conference
The cancer immunity cycle

Oncology meets immunology

1. Cancer antigen release
2. Cancer antigen uptake and presentation
3. T cell priming and activation
4. T cell trafficking
5. T cell infiltration
6. Tumor antigen recognition by T cells
7. Killing of cancer cells

Personalized Cancer Vaccine (P1)

Source: Adapted from Chen & Mellman, Immunity 39(1):1-10
Personalized cancer vaccine
Overcoming potential priming defects in the tumor

- Fully individualized vaccine (mRNA-based approach)
- On demand-production (highly iterated and reproducible with low failure rate)
- Suitable for potentially all tumor indications, also with low incidences
- No negative thymic selection of high-affinity TCRs against mutated epitopes
- Induction of immune responses with high tumor specificity

TCR=T-cell receptor; PCV=Personalized cancer vaccine; PCV in collaboration with BioNTech
Sahin et al., Nature 547:222-229
Immunogenic responses against neoantigens

Initial monitoring data from melanoma patients

13 patients with stage III and IV melanoma

<table>
<thead>
<tr>
<th>TAA RNA vaccination</th>
<th>Days of vaccination, dose: 500 or 1,000 μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>screening</td>
<td>1 4 8 11 15 22 29 43</td>
</tr>
<tr>
<td>Neo-epitope discovery and vaccine manufacturing</td>
<td>8 neo-epitope RNA vaccinations</td>
</tr>
<tr>
<td></td>
<td>Up to 12 vaccinations in continued treatment</td>
</tr>
</tbody>
</table>

PCV induces T cell immunity

Neoepitopes

- 32% de novo
- 68% pre-formed

T cells

- 26% CD4
- 17% CD8
- 57% CD4 & CD8

Reduction of recurrent metastatic events post-vaccination

- Pre neo-epitope RNA vaccination
- Post neo-epitope RNA vaccination

Cumulative sum of metastatic events

- **P < 0.0001**

PCV=Personalized cancer vaccine; PCV in collaboration with BioNTech
PCV may benefit all immunological phenotypes

Inducing immunity in patients who have none

Immune Desert

Immune Excluded

Inflamed

Vaccine well tolerated
Ongoing Phase 1b trial
Ph1 trial in combination with Tecentriq expected 2H 2017

PCV = Personalized cancer vaccine; PCV in collaboration with BioNTech
TDB Abs bypass cancer immunity cycle steps 1-3
Anti-CD3 arm activates T-cell killing of target cell

T-cell Dependent Bispecific Antibody

TDB=T-cell dependent bispecific antibody
TDBs for hematologic cancers

CD20 TDB in Phase 1 in NHL and CLL ongoing

- CD20 TDB for B cell lymphoma and leukemias
- Ongoing Phase 1b trial
- Combination with atezolizumab planned

CD3 **CD20**

- FcRH5 TDB for multiple myeloma

CD3 **FcRH5**

Cyno splenic B cells (D7)

- **Cyno plasma cells (D10)**

TDB=T-cell dependent bispecific antibody

TDBs for HER2-positive breast cancer

Novel MOA for a HER2-directed therapy

- Single agent activity in several models with durable complete responses (tumor regression observed at 0.05 mg/kg)
- Lack of killing HER-2 low expressing HT55 cells provides opportunity for therapeutic index
- Regression of T-DM1 insensitive tumors (*not shown here*)

TDB=T-cell dependent bispecific antibody; MOA=Mechanism of action

Table:

<table>
<thead>
<tr>
<th>Tumor Size (mm²)</th>
<th>HER2-TDB (0.05 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPL4 + T cells</td>
<td>HT55 + T cells</td>
</tr>
<tr>
<td>HT55 cells alone</td>
<td>HT55 cells alone</td>
</tr>
<tr>
<td>KPL4 cells alone</td>
<td>KPL4 cells alone</td>
</tr>
<tr>
<td>KPL4 + T cells</td>
<td></td>
</tr>
</tbody>
</table>
gRED’s TDB pipeline targets

Best in disease T-cell recruiting therapy

CD20
- B-cell malignancies

FcRH5
- Multiple Myeloma

HER2
- Breast cancer

Others to follow
- Colorectal cancer, ovarian cancer, prostate cancer, small cell lung cancer

Off-the-shelf therapeutic
- Predictable PK/PD to aid drug development
- Predictable half-life

TDB=T-cell dependent bispecific antibody
BTK small molecule inhibitor for immunology

GDC-0853: highly potent, selective & reversible

Rheumatoid arthritis (N=580)
Phase 2 (cohort 1): GDC-0853 vs adalimumab in DMARD-IR patients (including dose ranging)
Phase 2 (cohort 2): GDC-0853 vs MTX in TNF-IR patients

Systemic lupus erythematosus (N=240)
Phase 2: GDC-0853 vs placebo in moderate to severe SLE patients

Chronic spontaneous urticaria (N=45)
Phase 2: GDC-0853 vs placebo

Data expected in 2018

BTK=Bruton’s tyrosine kinase; DMARD=Disease-modifying antirheumatic drug; TNF=Tumour necrosis factor; DMARD-/TNF-IR=Insufficient response to DMARD/TNF; SLE=Systemic lupus erythematosus
Questions & Discussion