Roche Pharma Day 2019

Late Stage Pipeline Neuroscience

Paulo Fontoura M.D. Ph.D. | Global Head Neuroscience and Rare Diseases
Clinical Development
Neuroscience and rare diseases portfolio

Strongly differentiated pipeline

Phase 1 (3 NMEs)
- **RG7816**
 - **GABA\(_\alpha_5\) PAM**
 - Autism spectrum disorder
- **RG6000**
 - ALS
- **RG6237**
 - undisclosed

Phase 2 (4 NMEs)
- **RG7935**
 - prasinezumab
 - Parkinson's
- **RG6100**
 - aTau
 - Alzheimer's
- **RG1662**
 - basmisanil
 - CIAS
- **RG7906**
 - Schizophrenia

Late Stage (6 NMEs)
- **RG1450**
 - gantenerumab
 - Alzheimer's
- **RG7916**
 - satralizumab
 - NMOSD
- **RG7314**
 - balovaptan
 - Autism spectrum disorder
- **RG7916**
 - risdiplam
 - Spinal muscular atrophy
- **RG6206**
 - anti-myostatin adnectin FP
 - DMD
- **RG6042**
 - ASO HTT
 - Huntington's

Launched
- **RG1594**
 - Ocrevus
 - MS

- **2019**
 - FDA filing
 - RD = Rare Diseases

Risdiplam is developed in collaboration with PTC therapeutics and the SMA Foundation; RG6042 (ASO HTT) is developed in collaboration with Ionis Pharmaceuticals; CIAS = Cognitive impairment associated with schizophrenia; ALS = Amyotrophic lateral sclerosis; NMOSD = Neuromyelitis optica spectrum disorders; DMD = Duchenne muscular dystrophy; MS = Multiple sclerosis; FP = Fusion protein.
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Cotellix, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Influenza A/B: baloxavir marboxil

9. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

10. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

11. Immunology
 - HCC: Tecentriq, Avastin

12. Other oncology
 - GU: Tecentriq

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage
Neuroscience franchise: Ocrevus in MS

US label covers ~90% of MS patients including “active SPMS”&”CIS”

- The first and only treatment approved for both RMS and PPMS
- OCREVUS offers the first-ever approved treatment for PPMS, a highly disabling form of the disease in which disability accumulates twice as quickly as in RMS

Source: 1 Roche analysis of MS prevalence epidemiological studies; RMS=relapsing multiple sclerosis; PPMS=primary progressive MS; SPMS=secondary progressive MS; CIS=clinically isolated syndrome
Long term data of >6 years show: Earlier treatment with Ocrevus significantly reduces risk of permanent disability progression

RMS: time to onset of CDP for at least 24 weeks during the DBP and OLE period of OPERA

PPMS: time to onset of CDP for at least 24 weeks during the DBP and OLE period of ORATORIO

- Earlier treatment with Ocrevus significantly reduced the risk of disability progression and this effect was sustained over time

Giovannoni G. et al, ECTRIMS 2019; Wolinsky J.S. et al, ECTRIMS 2019; IFN=interferon; OCR=Ocrevus; RMS=relapsing multiple sclerosis; 24W-CDP=24 week-confirmed disability progression
Long term data of >6 years show: Earlier treatment with Ocrevus significantly reduces risk of patients needing a wheelchair (EDSS ≥7.0)

RMS: time to onset of CDP for at least 48 weeks during the DBP and OLE periods

- Earlier initiation of Ocrevus therapy significantly reduced the risk of becoming wheelchair confined by 42% vs those who switched from placebo

Wolinsky J.S. et al, ECTRIMS 2019; CDP=confirmed disability progression; DBP=double-blind period; ECP=extended controlled period; EDSS=Expanded Disability Status Scale; FU=follow-up; HR=hazard ratio; ITT=intention-to-treat; OCR=ocrelizumab; OLE=open-label extension; PBO=placebo
Higher Ocrevus exposure reduces risk of disability progression

Importance of starting and maintaining approved dosing

Hauser S.L. et al, AAN 2019; IFN=interferon; OCR=Ocrevus; RMS=relapsing multiple sclerosis; PPMS=primary progressive MS; Q=quartile
Importance of B-Cell depletion on disability progression

RMS (OPERA): B cell–stratified 24–week confirmed disability progression (CDP)

• Lower rates of disability progression associated with higher Ocrevus exposure and lower median B cell levels prior to the next infusion

Hauser S.L. et al, AAN 2019; IFN=interferon; OCR=Ocrevus; RMS=relapsing multiple sclerosis; 24W-CDP=24 week-confirmed disability progression
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Cotellic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Influenza A/B: baloxavir marboxil

9. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

10. Hemophilia A
 - Hemlibra

11. Neurology
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

12. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

13. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage.
Risdiplam in type 1/2/3 spinal muscular atrophy (SMA)
Broadest Ph III program with potentially best in class efficacy/safety profile

SMN2 splicing modifier

- Oral and systemically available SMN2 splicing modifier
- Durably increases SMN throughout CNS and periphery
- Potentially best in class efficacy profile
- To date well tolerated at all doses assessed

Broadest Ph III clinical program:

- Enrolment of SUNFISH and FIREFISH Part 2 is complete, and follow-up is ongoing
- First patients recruited into presymptomatic study (RAINBOWFISH)
- 30 Spinraza-treated patients btw age 1 and 60 recruited into non-naive study (JEWELFISH)
- Filing expected in 2019

Risdiplam in collaboration with PTC Therapeutics and the SMA Foundation
Risdiplam in type 1 SMA (FIREFISH Part 1)

Typical type 1 population starting treatment at 6.7 months of age

Ph III FIREFISH

- Type 1 SMA
- 1-7 months old
- Two SMN2 gene copies

Part 1: Dose-finding period followed by open-label extension

- **Cohort A**: Low dose (n = 4)
- **Cohort B**: High dose (n = 17)
- EP: Safety, tolerability, PK and PD

Part 2: Efficacy & safety at the selected dose (n=41)

- Primary endpoint: Proportion of infants sitting without support for 5 seconds after 12 months on treatment as assessed by Gross Motor Scale of the BSID-III

19/21 infants (90.5%) were alive & event-free* after 12m treatment

PNCR (Finkel) Natural History Study, 2014:

- 50% event free
- 25% event free
- 8% event free

- Median exposure to treatment: 14.8 months (range: 0.6-26.0)
- There were 3 deaths (unrelated to treatment) after 1, 8, and 13 months of treatment

- Symptom onset
- Age at enrollment
- Prior to treatment
- Cohort A: high dose
- Cohort B: low dose
- Death

Baranello et al AAN 2019; Data cut-off: 27 February 2019; # Finkel R, et al. Neurology. 2014; 83:810–817. The median age at the combined endpoint for subjects with two SMN2 copies was 10.5 months (IQR 8.1–13.6); event free is defined as alive and no need for permanent ventilation (defined as ≥16 hours per day continuously for ≥2 weeks); * Event free in FIREFISH is defined as alive with no permanent ventilation (i.e. no tracheostomy or BiPAP ≥16 hours per day continuously for >3 weeks or continuous intubation >3 weeks, in the absence of, or following the resolution of, an acute reversible event)
Risdiplam in type 1 SMA (FIREFISH Part 1)
Summary of 12 months of treatment

Cohort A+B (all infants)

- **90.5% (19/21)** of infants are alive and event free* after 12 months of treatment
- **0** infants lost the ability to swallow†
- **0** infants reached permanent ventilation/required tracheostomy
- No drug-related safety findings leading to withdrawal to date

Cohort B (high dose)

- **41% (7/17)** infants were able to sit without support for at least 5 seconds (as assessed by BSID-III)
- **1/17 (6%)** infants were able to stand supporting their weight (as assessed by HINE-2)
- **59% (10/17 infants)** had a CHOP-INTEND score ≥40

*Event free is defined as alive with no permanent ventilation (i.e. no tracheostomy or BiPAP ≥16 hours per day continuously for >3 weeks or continuous intubation >3 weeks, in the absence of, or following the resolution of, an acute reversible event).†1 infant was unable to swallow at baseline. BSID-III, Bayley Scales of Infant and Toddler Development, Third Edition; CHOP-INTEND, Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders; HINE-2, Hammersmith Infant Neurological Examination, Module 2; SMA, spinal muscular atrophy.
Risdiplam in type 2/3 SMA (SUNFISH Part 1)
Dose-finding in broad population starting at median of 7 years

Ph III SUNFISH

- Type 2 or 3 SMA
- 2–25 years old

Part 1: Dose-finding period followed by open-label extension
- Primary endpoints: Safety, tolerability, PK and PD
- Exploratory: efficacy

Part 2: Efficacy & safety at the selected dose (n=180)
- Placebo-controlled (2:1) for 12 months
- Primary endpoint: MFM

12 months after treatment start exploratory efficacy greatly exceeds natural history in younger and older patients

- The MFM32 is a 32 item assessment classified into 3 domains; Each item is measured on a 4-point scale with a total score of 0–100 and with higher scores indicating greater motor function.
- The MFM32 is validated measuring motor function in patients with neuromuscular diseases incl. SMA1,2

<table>
<thead>
<tr>
<th>Domain 1: standing, transfers and ambulation</th>
<th>12 months change from baseline</th>
<th>SUNFISH Part 1</th>
<th>Natural history SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range (years)</td>
<td>2–11 (n=24)†</td>
<td>12–25 (n=19)‡</td>
<td>2–25 (n=43)*</td>
</tr>
<tr>
<td>MFM32 change from baseline, mean (SD)</td>
<td>3.47 (3.77)</td>
<td>1.64 (3.43)</td>
<td>2.66 (3.70)</td>
</tr>
<tr>
<td>≥3 point change at month 12, n (95% CI)</td>
<td>17 (71%) (48–87%)</td>
<td>8 (42%) (20–67%)</td>
<td>25 (58%) (42%–73%)</td>
</tr>
</tbody>
</table>

Notes:
- Excludes seven patients who performed the MFM20 assessment at baseline and one patient who had dropped out of the study prior to the Month 12 visit; † excludes seven patients who performed the MFM20 assessment at baseline; ‡ excludes one patient who had dropped out of the study prior to the Month 12 visit. Based on change from adjusted baseline. SUNFISH data cut-off: 9th Jan 2019; MFM=Motor Function Measure. 1. Béillard C, et al. Neuromuscul Disord. 2005; 15:463–470; 2. Vuillerot C, et al. Ann Phys Rehabil Med. 2013; 56:673–686
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Cotellic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

6. Hemophilia A
 - Hemlibra

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

9. Immunology
 - Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

- For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage.
Satralizumab in NMOSD

Recycling Ab for maximal inhibition of IL-6 signaling

- Recycling mAb with high-affinity to soluble and membrane-bound IL-6 receptor
- Engineered to enable maximal inhibition of IL-6 signalling
- Convenient SC Q4W dosing at home

- NMOSD is a debilitating, chronic, autoimmune CNS disease with lesions in the optic nerves and spinal cord
- IL-6 is thought to impact B-cell mediated pathogenesis incl. AQP4 auto-antibody production
- Robust, durable efficacy demonstrated in AQP4+/- patients either as add-on therapy to SOC (Ph III SAKuraSky) or as monotherapy (Ph III SAKuraStar)

NMOSD=neuromyelitis optica spectrum disorder; CNS=central nervous system; AQP4=aquaporin; SOC=standard of care
Neuromyelitis optica spectrum disorder (NMOSD)

A rare and debilitating autoimmune CNS disease

<table>
<thead>
<tr>
<th>IL-6 is a key driver in the pathogenesis of NMOSD</th>
<th>Satoralizumab efficacy/safety profile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical manifestation
- Optic neuritis and/or longitudinally extensive transverse myelitis
- Blindness, severe motor disability, sensory disturbances, neuropathic pain
- Relapsing: Disability can accumulate with each subsequent attack
- Anti-AQP4 autoantibodies in 70 to 80% of patients
- ~40% of patients with NMOSD are first misdiagnosed as having MS

Satralizumab efficacy/safety profile
- **Highly effective**
 - Comparable efficacy to best in disease treatments
- **Flexible and convenient**
 - Only treatment studied as monotherapy and in combination with immunosuppressants
 - Convenient Q4w SC dosing
 - Broadest flexibility on patient profile (AQP4+/−, only treatment for adolescent)
 - Unique mechanism of action
- **Favourable safety profile**
 - Lower rate of infections incl. serious infections

Per 100,000

- 1/2 Blind within 5 years
- 5/1 Female/male

| ~5 Blind within 5 years Require wheelchair | Per 100,000 |

AQP4=aquaporin 4; MOA=mechanism of action; Q4W=every 4 weeks; SC=subcutaneous
Satralizumab as add-on therapy in NMOSD
79% relapse risk reduction in AQP4+ patients

Ph III results add-on therapy (SAkuraSky):

- As add-on therapy to baseline immunosuppressive therapy risk of relapse in the ITT population was reduced by 62%, in the AQP4+ patients by 79% with 91.5% of AQP4+ patients being relapse free at 48 and 96 weeks
- Efficacy was generally consistent across pre-specified subgroups

Yamamura et al. ECTRIMS 2018; Analysis based on ITT population; p-value based on log-rank test stratified by geographic region and baseline relapse rate. Protocol-defined relapse as adjudicated by the independent clinical endpoint committee. EDSS/FSS was assessed within 7 days of relapse reporting. CI=confidence interval; EDSS=Expanded Disability Status Scale; FSS=functional system scores; ITT=intent to treat
Satralizumab as monotherapy in NMOSD
74% relapse risk reduction in AQP4+ patients

Ph III results monotherapy (SAkuraStar):

- Relapse risk was reduced by 55% in the ITT population with 76% and 72% of patients being relapse-free at week 48 and 96, respectively.
- Relapse risk was reduced by 74% in AQP4+ patients (not affected by prior therapy or most recent attack type) with 83% and 77% being relapse-free at week 48 and 96, respectively.

Bennett J.L. et al., ECTRIMS 2019; Analysis based on ITT population; p-value (based on log-rank test) and hazard ratio (using Cox proportional-hazards model) stratified by prior therapy for prevention of NMOSD attack (B-cell-depleting or immunosuppressants/other) and by most recent attack in the year prior to screening (first attack vs relapse); CI=confidence interval; HR=hazard ratio; ITT=intention to treat
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. Hematology franchise
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. Breast Cancer franchise
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. Lung Cancer franchise
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. GU franchise
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. Pan tumor
 - NTRK+ tumors: Rozlytrek

6. Other oncology
 - Melanoma: Tecentriq, Cotelic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. Neuroscience
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. Infectious diseases
 - Influenza A/B: baloxavir marboxil

9. Immunology
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

6. Ophthalmology
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage.
HTT-ASO in Huntington’s disease

First drug to reduce toxic mHTT

Antisense RNA targeting total HTT

- Antisense drug binds to wtHTT and mHTT sequence leading to RNase H1 mediated degradation of wild-type and mutant HTT mRNA
- Addresses all patients

Phase II update:

mHTT CSF levels from 9 month OLE cut

- 9 month OLE data show sustained lowering of CSF mHTT in both dosing regimens (Q4W; Q8W) achieving the target reduction range of 30-50%
- Safe and well tolerated with no dose-limiting toxicities identified

Sanwald Ducray P. et al, AAN 2019; mHTT=mutant huntingtin; wtHTT= wild-type huntingtin; CSF=cerebrospinal fluid; OLE=open-label extension; Q4W=every 4 weeks; Q8W=every 2 months; IT=intrathecal; HTT-ASO licensed from IONIS Pharmaceuticals
HTT-ASO in Huntington’s disease

Ph III development program underway

Simulation of Q8W and Q16W dosing to achieve pharmacologically relevant effect (120 mg IT)

- Ph II OLE data and PK/PD modelling led to amendment of Ph III (GENERATION HD1) study to allow less frequent dosing (Q8W; Q16W)
- First patients recruited for new Ph III protocol in Q3
- Ph II OLE and HD Natural history study continue to provide data to inform the development program
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. **Hematology franchise**
 - CLL: Venclexta Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. **Breast Cancer franchise**
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. **Lung Cancer franchise**
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. **GU franchise**
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. **Pan tumor**
 - NTRK+ tumors: Rozlytrek

6. **Other oncology**
 - Melanoma: Tecentriq, Cotellic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. **Neuroscience**
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

8. **Infectious diseases**
 - Influenza A/B: baloxavir marboxil

9. **Immunology**
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

10. **Neuroscience**
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

* For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage
Balovaptan in autism spectrum disorder (ASD)

Early positive data from first Ph II study in adults

<table>
<thead>
<tr>
<th>V1a receptor antagonist</th>
<th>Phase III development program:</th>
</tr>
</thead>
</table>

- Oral, selective V1a receptor antagonist
- Vasopressin V1a receptor modulates social behavior and is implicated in ASD
- Good pharmacokinetic profile and well tolerated in Ph I and II studies

<table>
<thead>
<tr>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph II VANILLA adults (N=223)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph II aV1ation pediatrics (N=340)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph III V1aduct adults (N=350)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ph II (VANILLA) in adult men: Primary endpoint (SRS-2) not met; however dose dependent treatment effect on the Vineland™-II composite score shows significant improvement in socialization and communication; Published in *Science Translational Medicine*
- Digital biomarkers development for autism to quantify change in core ASD symptoms
- Ph II study (aV1ation) in children and adolescents with ASD ongoing, with Vineland™-II being the primary endpoints; Results expected in 2020
- Ph III trial (V1aduct) in adults with ASD on-going; results expected in 2020

ASD=autism spectrum disorder; SRS-2=social responsiveness scale-2; Vineland™-II=Vineland Adaptive Behavior Scale 2nd Edition
Late stage pipeline update

Topics covered in presentations and break-out sessions

1. **Hematology franchise**
 - CLL: Venclexta, Gazyva
 - DLBCL: Polivy, Venclexta
 - NHL, DLBCL: mosunetuzumab, CD20xCD3
 - AML: Venclexta, idasanutlin
 - MM: Venclexta

2. **Breast Cancer franchise**
 - HER2+: Kadcyla, Perjeta, FDC SC, Tecentriq
 - TNBC: Tecentriq, ipatasertib
 - HR+: ipatasertib; PI3Kα inhibitor

3. **Lung Cancer franchise**
 - NSCLC: Tecentriq
 - ALK+: Alecensa
 - ROS1+/NTRK+: Rozlytrek

4. **GU franchise**
 - mUC: Tecentriq
 - CRPC: ipatasertib

5. **Pan tumor**
 - NTRK+ tumors: Rozlytrek

6. **Other oncology**
 - Melanoma: Tecentriq, Cotelpic, Zelboraf
 - OC: Tecentriq, Avastin
 - HCC: Tecentriq, Avastin

7. **Hemophilia A**
 - Hemlibra

8. **Infectious diseases**
 - Influenza A/B: baloxavir marboxil

9. **Immunology**
 - Lupus nephritis: Gazyva
 - Ulcerative colitis: etrolizumab
 - Crohn’s disease: etrolizumab
 - Food allergy: Xolair
 - Nasal polyps: Xolair

10. **Neuroscience**
 - MS: Ocrevus update
 - SMA: risdiplam
 - NMOSD: satralizumab
 - Huntington’s disease: HTT-ASO
 - Autism: balovaptan
 - Parkinson’s disease: prasinezumab

11. **Ophthalmology**
 - DME, nAMD: faricimab
 - AMD: Port Delivery System ranibizumab
 - GA: ASO factor B
 - Choroideremia: Gene therapy

For further information on target patient populations please consult the appendix; For further details on the late stage pipeline please consult the HY 18 results presentation appendix or visit the IR homepage
Prasinezumab in Parkinson’s disease

First drug to reduce toxic forms of α-synuclein

Anti-α-synuclein mAb

- Humanized mAb designed to target aggregated forms of α-synuclein
- Potentially inhibiting neuron-to-neuron transfer of presumed pathogenic forms of α-synuclein, resulting in neuronal protection and slowing progression

Ph I results:

- 97% reduction of free α-synuclein serum level after single infusion at highest dose
- Prasinezumab reaches CSF concentrations expected to engage extracellular aggregated α-synuclein in the brain
- Digital endpoints in development for remote and frequent monitoring of symptoms
- Ph II data from Part 1 of the study expected in 2020

Digital endpoint development:

- Provided smart phone
- Automatic Wi-Fi data transfer

Jankovic J. et al, JAMA Neurol. 2018 Jun 18; Lipsmeier et al, Mov.Dis. April 2018; CSF=cerebrospinal fluid; Prasinezumab partnered with Prothena
Developing digital biomarkers in Neuroscience

Digital endpoints for drug development, improved diagnosis & treatment
Developing digital biomarkers in Neuroscience
Collect, process, analyse data to gain clinical knowledge

Develop behavioural tests
Data processing & analysis
Clinical knowledge
Digital biomarkers allow remote patient monitoring
Longitudinal resolution of symptom dynamics & real-world performance

Day in the life of a patient with weak symptoms
Digital biomarkers allow remote patient monitoring

Longitudinal resolution of symptom dynamics & real-world performance

Day in the life of a patient with weak symptoms

Day with a visit to the clinic or physician
Digital biomarkers allow remote patient monitoring

Longitudinal resolution of symptom dynamics & real-world performance
Digital biomarkers allow remote patient monitoring

Longitudinal resolution of symptom dynamics & real-world performance
Digital biomarkers in Multiple sclerosis

Floodlight: A neurologist in your pocket

Defining new endpoints and improving standard of care

Validating digital outcomes with traditional clinical endpoints for measuring disease progression

- Ph IIIb (ORATORIO-HAND), placebo-controlled: Ocrevus in PPMS including patients in wheelchairs and using upper limb function as 1EP
- Ph IIIb (CONSONANCE and ENSEMBLE) studies with Ocrevus across progressive MS spectrum
- FLOODLIGHT OPEN: Large (N=~10,000) non-interventional global study detecting and measuring progression initiated in Q2 2018

Midaglia L. et al., J Med Internet Res. 2019 Aug 30;21(8):e14863. doi: 10.2196/14863; MS=multiple sclerosis; PPMS=primary progressive MS; 1EP=primary end point
Digital biomarkers in Parkinson’s disease
Continuous monitoring during Ph II development (PASADENA)

High adherence: Active tests performed on 5-6 days/week

Excellent test-retest reliability

Strong clinical relationship: All active tests significant (p ≤ 0.001)

Taylor et al., Oral Presentation at ADPD 2019
Digital biomarker development in Neuroscience

Describing abnormalities across diseases

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Cognition</th>
<th>Hand Motor Function</th>
<th>Gait & balance</th>
<th>Vocalization</th>
<th>Activity & sociability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Huntington</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SMA</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Alzheimer</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Autism</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
Doing now what patients need next